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Abstract 
Charged Particle Radiography 

  

Los Alamos National Laboratory has used high energy protons as a probe in flash radiography 

for over a decade. In this time the proton radiography project has used 800 MeV protons, 

provided by the LANSCE accelerator facility at LANL, to diagnose over five-hundred dynamic 

experiments in support of stockpile stewardship programs as well as basic materials science. 

Through this effort significant experience has been gained in using charged particles as direct 

radiographic probes to diagnose transient systems.  The results of this experience will be 

discussed through the presentation of data from experiments recently performed at the LANL 

pRad. 

 

Outline: 

• proton interactions 

•history of proton radiography 

•How modern proton radiography works 

•The prad facility at the Los Alamos Neutron Science Center (LANCE) 

•Some results: experiments on energetics, tomography, miscellaneous uses of prad 

•Way forward: Resolution improvements 

•Conclusion 
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Proton Interactions 
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Early Proton Radiography 

Marginal Range Radiography 

• Reduce proton beam energy to near 

end of range. 

• Use steep portion of transmission 

curve to enhance sensitivity to areal 

density variations. 

• Coulomb scattering at low energy 

results in poor resolution >1.5 mm. 

• Contrast generated through proton 

absorption. 

Scattering Radiography 

• Edge detection only 

• Limited to thin objects 

• Contrast generated 

through position 

dependent scattering 
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LANL Transmission Radiography (1995) 
[Morris et al.] 

188 MeV secondary proton beamline at LANSCE 

Detector Object 
Magnetic Lens 

Image at the detector is 

substantially blurred. 

Magnetic imaging lens preserves 

image with high resolution. 
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Significant blur Correction (Matching) 

Also: Matching results in the sorting of protons at the Fourier plane 

by their angle of scattering regardless of the position at the object 

location suggesting that the remaining chromatic blur can further be 

reduced by using a collimator at the Fourier plane 

*  C.T. Mottershead and J. D. Zumbro, “Magnetic Optics for Proton Radiography”, Proceedings of the 1997 Particle Accelerator Conference 
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800 MeV x3 Magnifying Imaging Lens 
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Transmission Calculation 
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Nuclear removal processes: 

c - nuclear attenuation length (g/cm2) 

x - areal density 

Multiple Coulomb Scattering with collimation: 

o - scattering angle (radians) 

c - collimator size (radians) 

x - areal density 

xo - radiation length (g/cm2) 

p - momentum (MeV) 

β - relativistic velocity 

Total EstimatedTransmission:  

Good to 5-10% 
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LANSCE Experimental Areas 

 Lujan Center 
• National security 

research 

• Materials, bio-science, 

and nuclear physics  

• National user facility 

 

 

WNR 
• National security 

research 

• Nuclear Physics  

• Neutron Irradiation 

 Proton Radiography 
• National security 

research 

• Dynamic Materials 

science, 

• Hydrodynamics 

 Isotope Production Facility 
• Medical radioisotopes 
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800 MeV pRad Facility at LANSCE 

Object Location 
Identity Lens Image Locations 

Identity Lens Collimator 

Containment 

vessel 
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11 

x3 Magnifier (PMQs) 

X3 Lens 

Beam Expansion drift 

Object Location 

Made up of four 4” bore permanent magnet quads. 

Q Q Q Q 

collimator 

Q Q Q Q 

Image Location 1 

            IL1 

Containment 

vessel 
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Temporal Resolution 

Proton Beam 

Pellicle 

Scintillator 

• 19 images at first station 

• 22 images at second station 

• Typically 60 ns exposure times 

Time 

P
ro

to
n
 F

lu
x
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Failure Cone (Eric Ferm) (-I Lens) 

PRAD157 failure Cone
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Tin RMI Shots (Example) 
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2012 LANSCE Advisory Board Meeting 

March 25-27, 2012 

Richtmyer-Meshkov instability studies have provided critical data for  

the development of an ejecta model [W.T. Buttler, et. al] 

Photon Doppler Velocimetry 

vacuum 5 bar Xe 5 bar He 

Initial Seeding Perturbation 

Bubbles 

Spikes 

Continuous velocity record 

Plane Wave Lens 

High Explosives 

Plane Wave Lens 

detonator 

Sn Target 
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RMI: [W.T. Buttler] 

vacuum 
vacuum 

5 bars of Xe gas 
5 bars of Ne gas 
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Dynamic metal-on-metal interface: 

 Shock in HE Driver [Cline and Foley] 

Frames separated by 0.8ms 

17 

Hydrodynamic model 

validation of  

HE-driven metal 

plates flowing around 

a steel “T”. 

 

PBX9501 charge is 

used to drive a flyer a 

tantalum or tungsten 

flyer onto steel. The 

observed behavior of 

the metal ejecta flow 

is compared to 

hydrodynamic codes. 
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Cline Series: Hydrodynamic flow of Tungsten on Steel 

 [Cline and Foley] 
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Cline Series: Metal Interface Interactions  [Cline and 

Foley] 
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HE byproducts and 
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Early Time 
images: HE 
(driver) 
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shock waves 

19 



LA-UR-07-1225 LA-UR- 08-06300 LA-UR- 08-06300 

Demonstration of new EOS measurement capability with pRad 

Flyer 

Target 

1.4 km/s 

Shock in flyer 

Shock in target 

Shock in flyer 

Shock in target 

Shock in flyer 

Shock in target 

Shock in flyer 

Shock in target 

Impact 

• Radiographic 

measurement of density 

behind shock front. 

• Simultaineous 

measurement of particle 

and shock velocity 

Two methods of measuring a 

point on shock Hugoniot per 

dynamic event: 

sabot 
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The technique utilizes a flat metal plate with perturbations of 

known wavelength and amplitude machined into one 

side of the plate. High explosive is used to generate shock-

free, planar loading on the perturbed side of the plate and the 

amplitude of the Rayleigh-Taylor (R-T) unstable perturbations 

are measured from radiographs acquired as a function of time 

(see Fig. 1). The perturbation growth rate is directly related to 

the dynamic shear strength of the metal and thus can be 

compared directly to that predicted by various strength 

models via hydrodynamic calculations. 

Material Strength Experiments [R. Olson] 

HE 

Cu Plate 

2mm offset 3mm offset 

• Utilized improved resolution capability of new magnifier 

system. 

• Six dynamic experiments performed to study instability 

growth versus drive pressure by varying HE standoff. 

• Demonstrated shockless acceleration and reproducibility. 
T

im
e

 

21 



LA-UR-07-1225 LA-UR- 08-06300 LA-UR- 08-06300 

Set up: Tomography Surrogate Fuel Rods  
(HfO2 Pellets) 

800 MeV Proton 

Beam 
800 MeV Proton 

Beam 

Lucite graded 

degrader Zarcaloy 

Tube 

containing 

HfO2 

pellets 

Goniometer 

Zarcaloy tube was aligned on the graded degrader. 

Radiograph pictures were taken at 181 rotational positions  
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CT Reconstructed Slices show Processing Defects 

in a pellet of HfO2:  

 

#1 

#2 

#3 

#4 

#2 

#3 

#4 

#4 

Reconstructed Areal 

Density of HfO2 Pellets  
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Metrology of a Defect in surrogate Fuel Pellet using CT slices 
(Pellet #4, Slices 78 to 93, each 50 mm thick) 
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Solid Flame Experiment at pRadSolid Flame @10 Hz 
[Winkler, et al](movie005) 

• Exothermic reaction of formation of refractory 
materials such as Ta5Si3, TiB2, Ti5Si3, was initiated 
by using a heating filament on pressed samples of 
Ta and Si powder. 

• The reaction front travels from the point of ignition; 
due to small density differences between the pre-
reaction and post-reaction material, the progress 
of  burn front  was observed using pRad. 

• Interesting data on a Ta5Si3 exhibiting unsteady 
and steady burn is presented. Inert mixture in the 
sample preparation apparently gives rise to 
unsteady burn.  
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Solid Flame @10 Hz 
[Winkler, et al](movie005) 

y = 0.7184x - 0.2632 
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1.3 s 

0.9 s 

The burn progresses from top to bottom as indicated by 

the arrows. A fit to the approximate location of the 

flame front indicates that the burn proceeds at 

0.7cm/sec. The density change due to the reaction is -

5% to 6% 
More detailed analysis is in progress 

Images normalized to pre-burn pictures of a ~1 cm long tantalum scilicide Ta5Si3 

Igniter 
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Metal Eutectics: (Clark, et. al) 

Time-resolved imaging to study dynamic 
processes during melting and solidification 
of metal alloys 
 

Crucible mounted in front of the x3 pRad magnifier. Various alloys were inserted iinside the graphite crucible and heated. Images 
were acquired during the liquifiction and solidification processes. 
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28 
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Resolution of Proton Radiography 

1. Object scattering -  introduced as the protons are scattered while traversing the object.    
2. Chromatic aberrations-  introduced as the protons pass through the magnetic lens imaging system.   
3. Detector blur-  introduced as the proton interacts with the proton-to-light converter and as the light is 

gated and collected with a camera system.  
 

Proton position at 
image 

Incident proton 

l 

Object Scattering 

Im
ag
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Chromatic Aberrations 

Proton 
Beam 

Pellicle 

Scintillator 

Camera 

Detector Blur 

Scintillator Camera 

Resolution is 
independent of 
proton energy 

800 MeV 
775 MeV 
750 MeV 

Assume detector 
development can keep up 
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Results of Scaling 800 MeV Resolution 
Resolution: RMS of a Gaussian distribution (typically) 

 

No Detector Blur 

30 

4 GeV Protons 
25 - 350 mm resolution in HE 

25 - 1000 mm resolution in Uranium 

 

20 GeV Protons 
2 - 100 mm resolution in HE 

2 – 350 mm resolution in Uranium 
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Comparison of Scaling to a Measurement 
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High Energy Magnifier 

32 

Magnification at high energy can result in high 

resolution (<1 mm) but small field of view (20 mm) 
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Conclusion 
• 800 MeV proton radiography provides high quality 

dynamic in materials studies. 

• Over 500 dynamic experiments have so far been carried 

out at the LANL pRad facility 

• Use of pRad tomography for the study of nuclear fuel 

rods demonstrated. 

• Gains in resolution realized through the development of 

magnifying lens systems. 

• Groundwork for studies of high resolution prad started. 

• Interest at Los Alamos to build a user community for 

access to 800 MeV proton radiography. 
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Supporting Slides 
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Full LANSCE System 
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• Diffuser sets illumination pattern at object. 

• Matching quads establish position-angle correlation 

• CL-0 has a 9.0 mRad collimator 

• CL-1 and CL-2 can independently have 5-20 mrad collimators 

• Lens 0 used for beam monitoring 

• IL-1 has seven single-shot camera systems 

• IL-2 has five single-shot camera systems and a 9-frame framing camera 

• 21 images per dynamic event at up to 21 different times.   
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x7 Magnifier 

Beam Expansion drift 

Made up of four 1” bore permanent magnet quads; Yet to be commissioned properly 

Object Location 
Lens 

Image Location 



LA-UR-07-1225 LA-UR- 08-06300 LA-UR- 08-06300 

800 MeV  Proton  

Beam 

Tiled LSO 

Scintillator 
Pellicle - 8µm thk  

Lens 135mm/F#2.0 RS Camera 

Body 

Cooling Fan 

Controlle

r 
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Pellicle - 8µm thk  

800 MeV  Proton  

Beam 

Tiled LSO Scintillator 

RS Camera 

Body 

Controlle

r 

Lens: 85mm/ F#1.4 

Cooling Fan 
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Pellicle 

800 MeV  Proton  

Beam 

Tiled LSO Scintillator 

Camera 

Body 

Controlle

r 

Lens 85mm/ F#1.4 

Cooling Fan 
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Accurate Areal Density Reconstructions 
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Build a step wedge and adjust parameters to fit measured data 
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Adjust parameters to fit transmission data: 

• c - nuclear collision length 

• Xf – fixed radiation length (windows, beam angular spread) 
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Magnetic Imaging Lens 
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Multiple Coulomb Scattering 

C. Amsler et al., Physics Letters B667, 1 (2008) 
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Contrast from Multiple Coulomb Scattering 

Transmission 

Incident Beam After Object After Collimator 
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Nuclear Interactions 

Angular distribution of 800 MeV proton nuclear elastic 

scattering from Iron. 
Simple Approximation for Modeling Proton Radiography 

• Characteristic Nuclear Collision Length: c 

• Approximate that each interaction removes the 

proton from the acceptance of the imaging lens. 

• Measure the collision Length at 800 MeV 

The “true” nuclear interactions are more 

complicated than this simple assumption and these 

interactions are reasonably well understood.  This 

can all be simulated, but it is typically not worth the 

effort for designing small scale experiments. 

x
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Transmission 

45 



LA-UR-07-1225 LA-UR- 08-06300 LA-UR- 08-06300 

A Useful Table 
Particle Data Group: 

http://pdg.lbl.gov/ 
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When is an object too thick? 
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Simple Figure of Merit Comparison 

48 

FOM = Dose/s2 
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Dynamic Range of 800 MeV Proton Radiography 

• 800 MeV proton radiography ranges from 1 g/cm2 up to 70 g/cm2 of iron 
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Chromatic Aberration and Resolution 
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Station 2

Lens+Camera MTF

Lens+Camera MTF Fit

• 12 inch lens 

• Station 1: 178 mm 

• Station 2: 280 mm 

• Gaussian blur function. 

• 120 mm field of view 

Identity Lens 

2.5 lp/mm 

• 4 inch lens 

• Station 1: 65 mm 

• Gaussian blur function. 

• 44 mm field of view 

• 1 inch lens 

• Station 1: 30 mm 

• Gaussian blur function. 

• 17 mm field of view 

Identity Lens X3 Magnifier X7 Lens 
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Radiographic Analysis 

- = 

÷ = 

“Raw” Radiograph Dark Field 

Beam Picture Transmission 
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Bethe-Bloch Energy Loss for 800 MeV Protons 
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Density Reconstruction 
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Multi-Frame Radiographic Movies 
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Measurements of Object Scattering Blur 
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Sigma=0.061 mm 
4 cm of Al 

Resolution 

Pattern at 
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Location 

Beam 

2.5 lp/mm 
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Correcting Second Order Chromatic Aberrations 
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Chromatic Aberrations 

… 

x

c

p
x L

p



 

Black lines are the initial trajectories of the protons.  

Colored lines are trajectories of protons scattered 

by object. 

Resolution 

Proton Radiography: 

Momentum spread and chromatic length determine the resolution 

 

X-Ray Radiography:  

Spot size  and magnification determine the resolution. 

Δx  - Resolution 

Lc - Chromatic Length 

 - Scattering angle 

p - Momentum 

Off-focus protons by 

lower momentum 
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Chromatic Blur      Limbing 
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Limb: To outline in clear sharp detail 

Like phase-contrast radiography: 

• Useful to enhance edges 

• Problem for density reconstruction 
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High Energy 
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800 MeV x3 Magnifying Imaging Lens 
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Solid-Solid Phase Transition in Iron 

Dramatic Improvement in Resolution is allowing us to make new measurements like 

this solid-solid phase transition in iron. We are performing experiments with the 

magnifier to study solid-solid phase transitions in cerium this week. 

X3 Magnifying Lens 

Resolution improvement equivalent to an energy increase 

from 800 MeV to 2 GeV (in terms of chromatic blur) 

Identity Lens 8.7%
P

P


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Iron copper 
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Material Strength Experiments 
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*D.L.Preston, et al. J.Appl. Phys. 93, 211 (2003). ** D. J. Steinberg, et al. J.Appl. Phys. 61, 1816 (1987). 
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Material Strength Experiments 
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Breech 
12' barrel 

Catch tank 

experimental 

chamber 

Proton 

Beam 
Al Flyer 

Al target 

Powder Gun Driven Equation Of State Measurements 

Aluminum 
Copper 

LiF Window 

1.4 km/s 

1.4 km/s 
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Breech 
12' barrel 
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Solid-Solid Phase Transitions in Iron 
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pRad has been used to study the failure of materials driven 

by point detonated high explosives 

Aluminum Copper 

Tantalum Tin 

A comparison of spall for different materials 

• Experiments were aimed at extending VISAR 

measurements below the leading spall layer.   

• Proton radiographs reveal that the deepest damage 

layers are not well defined. 

• Multiple pRad experiments show that damage 

formation deep within the metal is “statistical” in 

nature and dependent on metal. 
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Complicated Studies of HE Burn Products 

High Explosives 

Line initiators 

¼” Steel PBX-9501 
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Studies of HE Burn Products 

High Explosives 

Line initiators 

¼” Steel PBX-9501 
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Evolution of Spall Damage 

What damage occurs behind the first spall layer? 

• How and where are voids 

formed? 

• How do they coalesce to form 

macroscopic damage? 

• Requires improvements in 

resolution. 

Dynamic Radiograph 

Micrograph 

0.8 cm 

Incipient Spall with Recovery Experiments 
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Explosively Formed Projectile (EFP) 
PRAD486 (Schwartz and Marr-Lyon) 

 

Cu disk 

PBX-9501 

Trial shot for future experiments to study 
projectile transport thru granular 
materials (sand)  
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Tomography of Surrogate Fuel Rods 
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Reconstructed Areal Density of HfO2 Pellets  


